The application of soil solarization (SS), one of the most promising techniques for the control of soilborne pathogens, is seriously limited by the drawback regarding the disposal of the used plastic materials. A possible solution to this problem is the use of biodegradable plastics. The aim of this study was to make comparisons between the impact of SS performed with biodegradable materials and that of SS with plastic films and other pest management techniques (i.e. organic matter amendment, calcium cyanamide and Dazomet fungicide application) on crop productivity, soilborne disease incidence, weed suppression, and soil chemical (total N, NH4-N, nitrate, available phosphorus, organic matter, hydrolysis of fluorescein diacetate) and microbial (cultivable Pseudomonas, DGGE fingerprinting of bacterial 16S- and fungal 28S rRNA gene fragments from total soil community DNA) parameters. We carried out field experiments in two types of soil with different textures (clay and sand) artificially inoculated with Fusarium oxysporum f.sp. lycopersici (vs. tomato) and Sclerotinia minor (vs. lettuce). The temperature of soils covered with solarizing materials was always higher than that of bare soils, but plastic cover was more effective and consistent in rising soil temperature compared to biodegradable materials. Plant growth promotion by SS was limited, especially compared to Dazomet and organic matter applications, and a positive effect was observed only for lettuce in the clay soil. Differently, both plastic and biodegradable solarizing materials were effective in reducing lettuce drop caused by S. minor. Weed development was significantly suppressed by Dazomet application and SS with plastic film, while control with biodegradable materials was limited. SS had a variable and limited effect on chemical and microbial parameters, with a general tendency to reduce richness of bacteria and fungi. Dazomet caused the most pronounced reduction of the microbial community diversity in both soil types and a significant stimulation of the fluorescent Pseudomonas group. Organic amendment significantly enhanced the organic matter content, the hydrolysis of fluorescein diacetate and the Pseudomonas population. Among all measured soil parameters, the size of the fluorescent Pseudomonas population emerged as the most important factor affecting crop productivity. The results of this experimentation show the potential of using biodegradable solarizing materials in place of plastic films, but also indicate the need for improving their properties to obtain performances comparable to those of other pest management techniques.

Soil solarization with biodegradable materials with other pest management methods and impact on the soil microbial community / Bonanomi, Giuliano; Chiurazzi, Mario; Caporaso, S.; DEL SORBO, Giovanni; Moschetti, G.; Scala, Felice. - In: SOIL BIOLOGY & BIOCHEMISTRY. - ISSN 0038-0717. - STAMPA. - 40:(2008), pp. 1989-1998.

Soil solarization with biodegradable materials with other pest management methods and impact on the soil microbial community

BONANOMI, GIULIANO;CHIURAZZI, MARIO;DEL SORBO, GIOVANNI;SCALA, FELICE
2008

Abstract

The application of soil solarization (SS), one of the most promising techniques for the control of soilborne pathogens, is seriously limited by the drawback regarding the disposal of the used plastic materials. A possible solution to this problem is the use of biodegradable plastics. The aim of this study was to make comparisons between the impact of SS performed with biodegradable materials and that of SS with plastic films and other pest management techniques (i.e. organic matter amendment, calcium cyanamide and Dazomet fungicide application) on crop productivity, soilborne disease incidence, weed suppression, and soil chemical (total N, NH4-N, nitrate, available phosphorus, organic matter, hydrolysis of fluorescein diacetate) and microbial (cultivable Pseudomonas, DGGE fingerprinting of bacterial 16S- and fungal 28S rRNA gene fragments from total soil community DNA) parameters. We carried out field experiments in two types of soil with different textures (clay and sand) artificially inoculated with Fusarium oxysporum f.sp. lycopersici (vs. tomato) and Sclerotinia minor (vs. lettuce). The temperature of soils covered with solarizing materials was always higher than that of bare soils, but plastic cover was more effective and consistent in rising soil temperature compared to biodegradable materials. Plant growth promotion by SS was limited, especially compared to Dazomet and organic matter applications, and a positive effect was observed only for lettuce in the clay soil. Differently, both plastic and biodegradable solarizing materials were effective in reducing lettuce drop caused by S. minor. Weed development was significantly suppressed by Dazomet application and SS with plastic film, while control with biodegradable materials was limited. SS had a variable and limited effect on chemical and microbial parameters, with a general tendency to reduce richness of bacteria and fungi. Dazomet caused the most pronounced reduction of the microbial community diversity in both soil types and a significant stimulation of the fluorescent Pseudomonas group. Organic amendment significantly enhanced the organic matter content, the hydrolysis of fluorescein diacetate and the Pseudomonas population. Among all measured soil parameters, the size of the fluorescent Pseudomonas population emerged as the most important factor affecting crop productivity. The results of this experimentation show the potential of using biodegradable solarizing materials in place of plastic films, but also indicate the need for improving their properties to obtain performances comparable to those of other pest management techniques.
2008
Soil solarization with biodegradable materials with other pest management methods and impact on the soil microbial community / Bonanomi, Giuliano; Chiurazzi, Mario; Caporaso, S.; DEL SORBO, Giovanni; Moschetti, G.; Scala, Felice. - In: SOIL BIOLOGY & BIOCHEMISTRY. - ISSN 0038-0717. - STAMPA. - 40:(2008), pp. 1989-1998.
File in questo prodotto:
File Dimensione Formato  
Soil solarization with biodegradable materials and impact on the soil microbial community.pdf

non disponibili

Tipologia: Abstract
Licenza: Accesso privato/ristretto
Dimensione 983.5 kB
Formato Adobe PDF
983.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/338638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact