For the first time, the complete structure of the lipid A from the lipopolysaccharide of an Agrobacterium species is here reported. In particular, the structure of the lipid A from A. tumefaciens strain C58, a soil pathogen bacterium strictly related to Rhizobiaceae, was determined. The structural study, carried out by chemical analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy, revealed that lipid A fraction consisted of a mixture of species all sharing the bis-phosphorylated glucosamine disaccharide backbone that could be designated in two main structural motifs, according to the acylation pattern. The main species was a penta-acylated lipid A bearing two unsubstituted 14:0 (3-OH) fatty acids in ester linkage and two 16:0 (3-OH) in amide linkage; the one on GlcN II was O-acylated by a long chain fatty acid, 28:0 (27-OH). This in turn was esterified by a 3-hydroxy-butyroyl residue at its hydroxy group. The second species, in lesser amounts, was identified as a tetra-acylated lipid A and lacked the 14:0 (3-OH) residue on GlcN I. Other species deriving from these two lacked a phosphate group or 3-hydroxy-butyroyl residue or otherwise carried a 26:0 (25-OH) as long chain fatty acid. The lipid A structure of phytopathogen A. tumefaciens strain C58 presents deep structural analogies with lipid A of symbiotic Rhizobium, and the hypothesis is advanced that it can be a strategy of the bacterium to escape or attenuate the plant response.

Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction / Silipo, Alba; DE CASTRO, Cristina; Lanzetta, Rosa; Molinaro, Antonio; Parrilli, Michelangelo. - In: GLYCOBIOLOGY. - ISSN 0959-6658. - STAMPA. - 14:(2004), pp. 805-815. [10.1093/glycob/cwh096]

Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction.

SILIPO, ALBA;DE CASTRO, CRISTINA;LANZETTA, ROSA;MOLINARO, ANTONIO;PARRILLI, MICHELANGELO
2004

Abstract

For the first time, the complete structure of the lipid A from the lipopolysaccharide of an Agrobacterium species is here reported. In particular, the structure of the lipid A from A. tumefaciens strain C58, a soil pathogen bacterium strictly related to Rhizobiaceae, was determined. The structural study, carried out by chemical analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy, revealed that lipid A fraction consisted of a mixture of species all sharing the bis-phosphorylated glucosamine disaccharide backbone that could be designated in two main structural motifs, according to the acylation pattern. The main species was a penta-acylated lipid A bearing two unsubstituted 14:0 (3-OH) fatty acids in ester linkage and two 16:0 (3-OH) in amide linkage; the one on GlcN II was O-acylated by a long chain fatty acid, 28:0 (27-OH). This in turn was esterified by a 3-hydroxy-butyroyl residue at its hydroxy group. The second species, in lesser amounts, was identified as a tetra-acylated lipid A and lacked the 14:0 (3-OH) residue on GlcN I. Other species deriving from these two lacked a phosphate group or 3-hydroxy-butyroyl residue or otherwise carried a 26:0 (25-OH) as long chain fatty acid. The lipid A structure of phytopathogen A. tumefaciens strain C58 presents deep structural analogies with lipid A of symbiotic Rhizobium, and the hypothesis is advanced that it can be a strategy of the bacterium to escape or attenuate the plant response.
2004
Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction / Silipo, Alba; DE CASTRO, Cristina; Lanzetta, Rosa; Molinaro, Antonio; Parrilli, Michelangelo. - In: GLYCOBIOLOGY. - ISSN 0959-6658. - STAMPA. - 14:(2004), pp. 805-815. [10.1093/glycob/cwh096]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/346716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact