Suppose that f = (u, v) is a homeomorphism in the plane of the Sobolev class W-loc(1,1) such that its inverse is of the same Sobolev class. We prove that u and v have the same set of critical points. As an application we show that u and v are distributional solutions to the same non-trivial degenerate elliptic equation in divergence form. We study similar properties also in higher dimensions. (c) 2009 Elsevier Inc. All rights reserved.

Bi-sobolev mappings and elliptic equations in the plane / S., Hencl; Moscariello, Gioconda; PASSARELLI DI NAPOLI, Antonia; Sbordone, Carlo. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 355:(2009), pp. 22-32. [10.1016/j.jmaa.2009.01.026]

Bi-sobolev mappings and elliptic equations in the plane

MOSCARIELLO, GIOCONDA;PASSARELLI DI NAPOLI, ANTONIA;SBORDONE, CARLO
2009

Abstract

Suppose that f = (u, v) is a homeomorphism in the plane of the Sobolev class W-loc(1,1) such that its inverse is of the same Sobolev class. We prove that u and v have the same set of critical points. As an application we show that u and v are distributional solutions to the same non-trivial degenerate elliptic equation in divergence form. We study similar properties also in higher dimensions. (c) 2009 Elsevier Inc. All rights reserved.
2009
Bi-sobolev mappings and elliptic equations in the plane / S., Hencl; Moscariello, Gioconda; PASSARELLI DI NAPOLI, Antonia; Sbordone, Carlo. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 355:(2009), pp. 22-32. [10.1016/j.jmaa.2009.01.026]
File in questo prodotto:
File Dimensione Formato  
JMAA.pdf

non disponibili

Tipologia: Abstract
Licenza: Accesso privato/ristretto
Dimensione 219.55 kB
Formato Adobe PDF
219.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/347593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact