Let p be an odd prime, and let K(n)* denote the nth Morava K-theory at the prime p; we compute the K(n)-Euler characteristic \chi_{n;p}(G) of the classifying space of an extraspecial p-group G. Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G. We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional Fp-vector space with respect to a non-degenerate alternating form B.

The $K(n)$-Euler characteristic of extraspecial $p$-groups / Brunetti, Maurizio. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - STAMPA. - 155:no. 2-3(2001), pp. 105-113.

The $K(n)$-Euler characteristic of extraspecial $p$-groups.

BRUNETTI, MAURIZIO
2001

Abstract

Let p be an odd prime, and let K(n)* denote the nth Morava K-theory at the prime p; we compute the K(n)-Euler characteristic \chi_{n;p}(G) of the classifying space of an extraspecial p-group G. Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G. We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional Fp-vector space with respect to a non-degenerate alternating form B.
2001
The $K(n)$-Euler characteristic of extraspecial $p$-groups / Brunetti, Maurizio. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - STAMPA. - 155:no. 2-3(2001), pp. 105-113.
File in questo prodotto:
File Dimensione Formato  
08 Pure and Applied.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 86.84 kB
Formato Adobe PDF
86.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/349875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact