Let p be an odd prime, and let K(n)* denote the nth Morava K-theory at the prime p; we compute the K(n)-Euler characteristic \chi_{n;p}(G) of the classifying space of an extraspecial p-group G. Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G. We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional Fp-vector space with respect to a non-degenerate alternating form B.
The $K(n)$-Euler characteristic of extraspecial $p$-groups / Brunetti, Maurizio. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - STAMPA. - 155:no. 2-3(2001), pp. 105-113.
The $K(n)$-Euler characteristic of extraspecial $p$-groups.
BRUNETTI, MAURIZIO
2001
Abstract
Let p be an odd prime, and let K(n)* denote the nth Morava K-theory at the prime p; we compute the K(n)-Euler characteristic \chi_{n;p}(G) of the classifying space of an extraspecial p-group G. Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G. We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional Fp-vector space with respect to a non-degenerate alternating form B.File | Dimensione | Formato | |
---|---|---|---|
08 Pure and Applied.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
86.84 kB
Formato
Adobe PDF
|
86.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.