We show that among all the convex bounded domain in R^2 having an assigned asymmetry index related to Hausdorff distance, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We also show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domain.

A sharp isoperimetric inequality in the plane involving Hausdorff distance / Alvino, Angelo; Ferone, Vincenzo; Nitsch, Carlo. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - STAMPA. - 20:(2009), pp. 397-412.

A sharp isoperimetric inequality in the plane involving Hausdorff distance

ALVINO, ANGELO;FERONE, VINCENZO;NITSCH, CARLO
2009

Abstract

We show that among all the convex bounded domain in R^2 having an assigned asymmetry index related to Hausdorff distance, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We also show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domain.
2009
A sharp isoperimetric inequality in the plane involving Hausdorff distance / Alvino, Angelo; Ferone, Vincenzo; Nitsch, Carlo. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - STAMPA. - 20:(2009), pp. 397-412.
File in questo prodotto:
File Dimensione Formato  
alvino_ferone_nitsch2009.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 227.92 kB
Formato Adobe PDF
227.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/360688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
social impact