We have previously shown that the growth of human tumor xenografts in immunodeficient mice can be efficiently suppressed upon infection with the autonomous parvovirus H-1 or with cytokine-transducing derivatives thereof. To further evaluate the benefits of implementing parvoviruses in cancer gene therapy, we have created a new recombinant vector, MVMp/IP-10, transducing the immunoactive, antiangiogenic chemokine IP-10, and used this virus to treat syngeneic tumors grown in immunocompetent mice. Intratumoral/intraperitoneal administration of only 3 x 10(7) replication units of MVMp/IP-10 per animal strongly inhibited the progression of established H5V cell-induced vascular tumors, a highly malignant mouse model for human cavernous hemangioma and Kaposi's sarcoma. Retardation of recurrent tumor growth and suppression of life-threatening metastatic dissemination to internal organs were accompanied by a striking delay in hemangioma-associated mortality. Parental MVMp did not have a significant effect under these conditions up to the dose of 10(10) infectious units/animal, but had strong antihemangiosarcoma activity when used to infect H5V cells ex vivo prior to implantation. In all cases, virus therapy was very well tolerated. Virus-induced suppression of hemangiosarcoma was dependent on host T cells and associated with intratumoral persistence of IFN gamma-expressing cytotoxic lymphocytes, and led to the reduced expression of hepatic plasminogen activator inhibitor-1 (PAI-1), a metastasis-linked marker. This proof of principle study demonstrates that MVMp/IP-10 can aid the treatment of vascular tumors and that autonomous parvovirus-based vectors can be considered potent tools for cancer gene therapy purposes.

Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice / Giese, Na; Raykov, Z; DE MARTINO, Luisa; Vecchi, A; Sozzani, S; Dinsart, C; Cornelis, Jj; Rommelaere, J.. - In: CANCER GENE THERAPY. - ISSN 0929-1903. - 9:5(2002), pp. 432-442. [10.1038/sj.cgt.7700457]

Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice.

DE MARTINO, LUISA;
2002

Abstract

We have previously shown that the growth of human tumor xenografts in immunodeficient mice can be efficiently suppressed upon infection with the autonomous parvovirus H-1 or with cytokine-transducing derivatives thereof. To further evaluate the benefits of implementing parvoviruses in cancer gene therapy, we have created a new recombinant vector, MVMp/IP-10, transducing the immunoactive, antiangiogenic chemokine IP-10, and used this virus to treat syngeneic tumors grown in immunocompetent mice. Intratumoral/intraperitoneal administration of only 3 x 10(7) replication units of MVMp/IP-10 per animal strongly inhibited the progression of established H5V cell-induced vascular tumors, a highly malignant mouse model for human cavernous hemangioma and Kaposi's sarcoma. Retardation of recurrent tumor growth and suppression of life-threatening metastatic dissemination to internal organs were accompanied by a striking delay in hemangioma-associated mortality. Parental MVMp did not have a significant effect under these conditions up to the dose of 10(10) infectious units/animal, but had strong antihemangiosarcoma activity when used to infect H5V cells ex vivo prior to implantation. In all cases, virus therapy was very well tolerated. Virus-induced suppression of hemangiosarcoma was dependent on host T cells and associated with intratumoral persistence of IFN gamma-expressing cytotoxic lymphocytes, and led to the reduced expression of hepatic plasminogen activator inhibitor-1 (PAI-1), a metastasis-linked marker. This proof of principle study demonstrates that MVMp/IP-10 can aid the treatment of vascular tumors and that autonomous parvovirus-based vectors can be considered potent tools for cancer gene therapy purposes.
2002
Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice / Giese, Na; Raykov, Z; DE MARTINO, Luisa; Vecchi, A; Sozzani, S; Dinsart, C; Cornelis, Jj; Rommelaere, J.. - In: CANCER GENE THERAPY. - ISSN 0929-1903. - 9:5(2002), pp. 432-442. [10.1038/sj.cgt.7700457]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/379338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact