Let G be the group of projectivities stabilizing a unital U in PG(2,q^2) and let A,B be two distinct points of U. In this paper we prove that, if G has an elation group of order q with center A and a group of projectivities stabilizing both A and B of order a divisor of q -1 greater than 2(\sqrt{q}-1), then U is an ovoidal Buekenhout-Metz unital. From this result two group theoretic characterizations of orthogonal Buekenhout-Metz unitals are given.

Group theoretic characterizations of Buekenhout–Metz unitals in PG(2,q^2) / Donati, Giorgio; Durante, Nicola. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - 33:3(2011), pp. 401-407. [10.1007/s10801-010-0250-8]

Group theoretic characterizations of Buekenhout–Metz unitals in PG(2,q^2)

DONATI, GIORGIO;DURANTE, NICOLA
2011

Abstract

Let G be the group of projectivities stabilizing a unital U in PG(2,q^2) and let A,B be two distinct points of U. In this paper we prove that, if G has an elation group of order q with center A and a group of projectivities stabilizing both A and B of order a divisor of q -1 greater than 2(\sqrt{q}-1), then U is an ovoidal Buekenhout-Metz unital. From this result two group theoretic characterizations of orthogonal Buekenhout-Metz unitals are given.
2011
Group theoretic characterizations of Buekenhout–Metz unitals in PG(2,q^2) / Donati, Giorgio; Durante, Nicola. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - 33:3(2011), pp. 401-407. [10.1007/s10801-010-0250-8]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/391449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact