We examine perturbations of eigenvalues and resonances for a class of multi-channel quantum mechanical model Hamiltonians describing a particle interacting with a localized spin in dimension d = 1, 3. We consider unperturbed Hamiltonians showing eigenvalues and resonances at the threshold of the continuous spectrum and we analyze the effect of various types of perturbations on the spectral singularities. We provide algorithms to obtain convergent series expansions for the coordinates of the singularities.

Perturbations of eigenvalues embedded at threshold I. One- and three-dimensional solvable models / C., Cacciapuoti; Carlone, Raffaele; Figari, Rodolfo. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - ELETTRONICO. - 43:47(2010), pp. 1-15. [10.1088/1751-8113/43/47/474009]

Perturbations of eigenvalues embedded at threshold I. One- and three-dimensional solvable models

CARLONE, RAFFAELE;FIGARI, RODOLFO
2010

Abstract

We examine perturbations of eigenvalues and resonances for a class of multi-channel quantum mechanical model Hamiltonians describing a particle interacting with a localized spin in dimension d = 1, 3. We consider unperturbed Hamiltonians showing eigenvalues and resonances at the threshold of the continuous spectrum and we analyze the effect of various types of perturbations on the spectral singularities. We provide algorithms to obtain convergent series expansions for the coordinates of the singularities.
2010
Perturbations of eigenvalues embedded at threshold I. One- and three-dimensional solvable models / C., Cacciapuoti; Carlone, Raffaele; Figari, Rodolfo. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - ELETTRONICO. - 43:47(2010), pp. 1-15. [10.1088/1751-8113/43/47/474009]
File in questo prodotto:
File Dimensione Formato  
8.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 260.42 kB
Formato Adobe PDF
260.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/415229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact