Let 1 < c < 15/14 and N a sufficiently large real number. In this paper we prove that, for all eta is an element of (N, 2N] \ A with \A\ = O (N exp ( -1/3 ( L/c ) 1/5) ), the inequality \p(1)(c) + p(2)(c) - eta\ < eta(1-15/14c) L8 as solutions in primes p(1), p(2) less than or equal to N-1/c.

On a binary diophantine inequality involving prime numbers / Laporta, Maurizio. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 83:3(1999), pp. 179-187. [10.1023/A:1006763805240]

On a binary diophantine inequality involving prime numbers

LAPORTA, MAURIZIO
1999

Abstract

Let 1 < c < 15/14 and N a sufficiently large real number. In this paper we prove that, for all eta is an element of (N, 2N] \ A with \A\ = O (N exp ( -1/3 ( L/c ) 1/5) ), the inequality \p(1)(c) + p(2)(c) - eta\ < eta(1-15/14c) L8 as solutions in primes p(1), p(2) less than or equal to N-1/c.
1999
On a binary diophantine inequality involving prime numbers / Laporta, Maurizio. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 83:3(1999), pp. 179-187. [10.1023/A:1006763805240]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/476334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact