For a given bounded Lipschitz set Ω, we consider a Steklov-type eigenvalue problem for the Laplacian operator whose solutions provide extremal functions for the compact embedding H^1(Ω)↪L^2(∂Ω). We prove that a conjectured reverse Faber-Krahn inequality holds true at least in the class of Lipschitz sets which are "close" to a ball in a Hausdorff metric sense. The result implies that among sets of prescribed measure, balls are local minimizers of the embedding constant.

On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue / Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 14:1(2015), pp. 63-81. [10.3934/cpaa.2015.14.63]

On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue

FERONE, VINCENZO;NITSCH, CARLO;TROMBETTI, CRISTINA
2015

Abstract

For a given bounded Lipschitz set Ω, we consider a Steklov-type eigenvalue problem for the Laplacian operator whose solutions provide extremal functions for the compact embedding H^1(Ω)↪L^2(∂Ω). We prove that a conjectured reverse Faber-Krahn inequality holds true at least in the class of Lipschitz sets which are "close" to a ball in a Hausdorff metric sense. The result implies that among sets of prescribed measure, balls are local minimizers of the embedding constant.
2015
On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue / Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 14:1(2015), pp. 63-81. [10.3934/cpaa.2015.14.63]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/567463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact