We study subregular spreads of $PG(3,q)$, i.e. spreads obtained from a regular one reversing some (possibly none) reguli, proving that subregular spreads have an indicator set contained in two lines (the classical indicator sets of two regular spreads) and this indicator set union its directions is a rank 3 blocking set. Furthermore, we discuss some examples of rank 3 blocking sets associated with subregular spreads.

Subregular spreads and blocking sets / Bader, Laura; DE VITO, Paola. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 63:(2014), pp. 347-353. [10.1007/s11587-014-0189-5]

Subregular spreads and blocking sets

BADER, LAURA;DE VITO, PAOLA
2014

Abstract

We study subregular spreads of $PG(3,q)$, i.e. spreads obtained from a regular one reversing some (possibly none) reguli, proving that subregular spreads have an indicator set contained in two lines (the classical indicator sets of two regular spreads) and this indicator set union its directions is a rank 3 blocking set. Furthermore, we discuss some examples of rank 3 blocking sets associated with subregular spreads.
2014
Subregular spreads and blocking sets / Bader, Laura; DE VITO, Paola. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 63:(2014), pp. 347-353. [10.1007/s11587-014-0189-5]
File in questo prodotto:
File Dimensione Formato  
baderdevito_final_ricerche2.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso privato/ristretto
Dimensione 73.29 kB
Formato Adobe PDF
73.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/572647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact