We show that the elastic energy E(γ) of a closed curve γ has a minimizer among all plane simple regular closed curves of given enclosed area A(γ), and that the minimum is attained for a circle. The proof is of a geometric nature and deforms parts of γ in a finite number of steps to construct some related convex sets with smaller energy.

The elastica problem under area constraint / Ferone, Vincenzo; Kawohl, Bernd; Nitsch, Carlo. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 365:3-4(2016), pp. 987-1015. [10.1007/s00208-015-1284-y]

The elastica problem under area constraint

FERONE, VINCENZO;NITSCH, CARLO
2016

Abstract

We show that the elastic energy E(γ) of a closed curve γ has a minimizer among all plane simple regular closed curves of given enclosed area A(γ), and that the minimum is attained for a circle. The proof is of a geometric nature and deforms parts of γ in a finite number of steps to construct some related convex sets with smaller energy.
2016
The elastica problem under area constraint / Ferone, Vincenzo; Kawohl, Bernd; Nitsch, Carlo. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 365:3-4(2016), pp. 987-1015. [10.1007/s00208-015-1284-y]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/611505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact