We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a "principal bundle" construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.

Non-associative geometry of quantum tori / D'Andrea, Francesco; Franco, Davide. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 12:(2016), pp. 1-14. [10.3842/SIGMA.2016.015]

Non-associative geometry of quantum tori

D'ANDREA, FRANCESCO
;
FRANCO, DAVIDE
2016

Abstract

We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a "principal bundle" construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.
2016
Non-associative geometry of quantum tori / D'Andrea, Francesco; Franco, Davide. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 12:(2016), pp. 1-14. [10.3842/SIGMA.2016.015]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/662388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact