We examine the suppression of quantum beating in a one dimensional non-linear double well potential made up of two focusing nonlinear point interactions. The investigation of the Schrödinger dynamics is reduced to the study of a system of coupled nonlinear Volterra integral equations. For various values of the geometric and dynamical parameters of the model we give analytical and numerical results on the way states, which are initially confined in one well, evolve. We show that already for a nonlinearity exponent well below the critical value there is complete suppression of the typical beating behavior characterizing the linear quantum case

The quantum beating and its numerical simulation / Carlone, Raffaele; Figari, Rodolfo; Negulescu, Claudia. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 450:2(2017), pp. 1294-1316. [10.1016/j.jmaa.2017.01.047]

The quantum beating and its numerical simulation

CARLONE, RAFFAELE;FIGARI, RODOLFO;NEGULESCU, CLAUDIA
2017

Abstract

We examine the suppression of quantum beating in a one dimensional non-linear double well potential made up of two focusing nonlinear point interactions. The investigation of the Schrödinger dynamics is reduced to the study of a system of coupled nonlinear Volterra integral equations. For various values of the geometric and dynamical parameters of the model we give analytical and numerical results on the way states, which are initially confined in one well, evolve. We show that already for a nonlinearity exponent well below the critical value there is complete suppression of the typical beating behavior characterizing the linear quantum case
2017
The quantum beating and its numerical simulation / Carlone, Raffaele; Figari, Rodolfo; Negulescu, Claudia. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 450:2(2017), pp. 1294-1316. [10.1016/j.jmaa.2017.01.047]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X17300793-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/677285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 10
social impact