We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.
Controllability of quasi-linear Hamiltonian NLS equations / Baldi, Pietro; Haus, Emanuele; Montalto, Riccardo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 264:3(2018), pp. 1786-1840. [10.1016/j.jde.2017.10.009]
Controllability of quasi-linear Hamiltonian NLS equations
Baldi, Pietro
;Haus, Emanuele;
2018
Abstract
We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Baldi-Haus-Montalto-JDE-2018.pdf
non disponibili
Descrizione: File della pubblicazione
Tipologia:
Versione Editoriale (PDF)
Licenza:
Accesso privato/ristretto
Dimensione
685.76 kB
Formato
Adobe PDF
|
685.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.