We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.

Controllability of quasi-linear Hamiltonian NLS equations / Baldi, Pietro; Haus, Emanuele; Montalto, Riccardo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 264:3(2018), pp. 1786-1840. [10.1016/j.jde.2017.10.009]

Controllability of quasi-linear Hamiltonian NLS equations

Baldi, Pietro
;
Haus, Emanuele;
2018

Abstract

We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.
2018
Controllability of quasi-linear Hamiltonian NLS equations / Baldi, Pietro; Haus, Emanuele; Montalto, Riccardo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 264:3(2018), pp. 1786-1840. [10.1016/j.jde.2017.10.009]
File in questo prodotto:
File Dimensione Formato  
Baldi-Haus-Montalto-JDE-2018.pdf

non disponibili

Descrizione: File della pubblicazione
Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 685.76 kB
Formato Adobe PDF
685.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/695093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact