We exhibit, for each positive even degree, a ternary form of rank strictly greater than the maximum rank of monomials. Together with an earlier result in the odd case, this gives a lower bound of floor of (d^2+2d+5)/4,for d>=2, on the maximum rank of degree d ternary forms with coefficients in an algebraically closed field of characteristic zero.

High-rank ternary forms of even degree / DE PARIS, Alessandro. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 109:6(2017), pp. 505-510. [10.1007/s00013-017-1105-5]

High-rank ternary forms of even degree

DE PARIS, ALESSANDRO
2017

Abstract

We exhibit, for each positive even degree, a ternary form of rank strictly greater than the maximum rank of monomials. Together with an earlier result in the odd case, this gives a lower bound of floor of (d^2+2d+5)/4,for d>=2, on the maximum rank of degree d ternary forms with coefficients in an algebraically closed field of characteristic zero.
2017
High-rank ternary forms of even degree / DE PARIS, Alessandro. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 109:6(2017), pp. 505-510. [10.1007/s00013-017-1105-5]
File in questo prodotto:
File Dimensione Formato  
AuthorVersionAdM.pdf

Open Access dal 02/10/2018

Descrizione: Accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s00013-017-1105-5
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 279.46 kB
Formato Adobe PDF
279.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/695859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact