This paper presents a new heuristic for solving the flowshop scheduling problem that aims to minimize makespan and maximize tardiness. The algorithm is able to take into account the aforementioned performance measures, finding a set of non-dominated solutions representing the Pareto front. This method is based on the integration of two different techniques: a multi-criteria decision-making method and a constructive heuristic procedure developed for makespan minimization in flowshop scheduling problems. In particular, the technique for order preference by similarity of ideal solution (TOPSIS) algorithm is integrated with the Nawaz-Enscore-Ham (NEH) heuristic to generate a set of potential scheduling solutions. To assess the proposed heuristic's performance, comparison with the best performing multi-objective genetic local search (MOGLS) algorithm proposed in literature is carried out. The test is executed on a large number of random problems characterized by different numbers of machines and jobs. The results show that the new heuristic frequently exceeds the MOGLS results in terms of both non-dominated solutions, set quality and computational time. In particular, the improvement becomes more and more significant as the number of jobs in the problem increases.
A new heuristic for the flowshop scheduling problem to minimize makespan and maximum tardiness / Braglia, Marcello; Grassi, Andrea. - In: INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH. - ISSN 0020-7543. - 47:1(2009), pp. 273-288. [10.1080/00207540701500486]
A new heuristic for the flowshop scheduling problem to minimize makespan and maximum tardiness
Grassi, Andrea
2009
Abstract
This paper presents a new heuristic for solving the flowshop scheduling problem that aims to minimize makespan and maximize tardiness. The algorithm is able to take into account the aforementioned performance measures, finding a set of non-dominated solutions representing the Pareto front. This method is based on the integration of two different techniques: a multi-criteria decision-making method and a constructive heuristic procedure developed for makespan minimization in flowshop scheduling problems. In particular, the technique for order preference by similarity of ideal solution (TOPSIS) algorithm is integrated with the Nawaz-Enscore-Ham (NEH) heuristic to generate a set of potential scheduling solutions. To assess the proposed heuristic's performance, comparison with the best performing multi-objective genetic local search (MOGLS) algorithm proposed in literature is carried out. The test is executed on a large number of random problems characterized by different numbers of machines and jobs. The results show that the new heuristic frequently exceeds the MOGLS results in terms of both non-dominated solutions, set quality and computational time. In particular, the improvement becomes more and more significant as the number of jobs in the problem increases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.