The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al2 O3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al2 O3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests.

Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes / Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina. - In: SMALL. - ISSN 1613-6810. - (2018), pp. 1800614-1800623. [10.1002/smll.201800614]

Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes

Riccio, Michele;Irace, Andrea;SARRO, PASQUALINA
2018

Abstract

The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al2 O3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al2 O3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests.
2018
Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes / Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina. - In: SMALL. - ISSN 1613-6810. - (2018), pp. 1800614-1800623. [10.1002/smll.201800614]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/717375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact