The pollen of hermaphrodite plants is often utilised by flower-visiting animals. While pollen production has obvious benefits for plant male fitness, its consequences for plant female fitness, especially in self-incompatible hermaphrodite species, are less certain. Pollen production could either enhance seed production though increased pollinator attraction, or reduce it if ovules are discounted by deposition of self pollen, as can occur in species with late-acting self-incompatibility. To test the effects of pollen reward provision on female fitness, we artificially emasculated flowers in two populations of the succulent Aloe maculata (Asphodelaceae), which has a late-acting self-incompatibility system, over the course of its flowering period. Flowers of this species are visited by sunbirds (for nectar) and native bees (for pollen and nectar). We measured floral visitation rates, floral rejection rates, pollen deposition on stigmas and fruit and seed set in both emasculated and non-emasculated plants. We found that flowers of emasculated plants suffered reduced visitation and increased rejection (arrival without visitation) by bees, but not by sunbirds; had fewer pollen grains deposited on stigmas and showed an overall decrease in fruit set and seed set. Rates of seed abortion were, however, greatly reduced in emasculated flowers. This study shows that pollen rewards can be important for seed set, even in self-incompatible plants, which have been assumed to rely on nectar rewards for pollinator attraction. Seed abortion was, however, increased by pollen production, a result that highlights the complexity of selection on pollen production in hermaphrodite flowers.

Effects of pollen reward removal on fecundity in a self-incompatible hermaphrodite plant / Duffy, K. J.; Johnson, S. D.. - In: PLANT BIOLOGY. - ISSN 1435-8603. - 13:3(2011), pp. 556-560. [10.1111/j.1438-8677.2011.00445.x]

Effects of pollen reward removal on fecundity in a self-incompatible hermaphrodite plant

Duffy, K. J.
;
2011

Abstract

The pollen of hermaphrodite plants is often utilised by flower-visiting animals. While pollen production has obvious benefits for plant male fitness, its consequences for plant female fitness, especially in self-incompatible hermaphrodite species, are less certain. Pollen production could either enhance seed production though increased pollinator attraction, or reduce it if ovules are discounted by deposition of self pollen, as can occur in species with late-acting self-incompatibility. To test the effects of pollen reward provision on female fitness, we artificially emasculated flowers in two populations of the succulent Aloe maculata (Asphodelaceae), which has a late-acting self-incompatibility system, over the course of its flowering period. Flowers of this species are visited by sunbirds (for nectar) and native bees (for pollen and nectar). We measured floral visitation rates, floral rejection rates, pollen deposition on stigmas and fruit and seed set in both emasculated and non-emasculated plants. We found that flowers of emasculated plants suffered reduced visitation and increased rejection (arrival without visitation) by bees, but not by sunbirds; had fewer pollen grains deposited on stigmas and showed an overall decrease in fruit set and seed set. Rates of seed abortion were, however, greatly reduced in emasculated flowers. This study shows that pollen rewards can be important for seed set, even in self-incompatible plants, which have been assumed to rely on nectar rewards for pollinator attraction. Seed abortion was, however, increased by pollen production, a result that highlights the complexity of selection on pollen production in hermaphrodite flowers.
2011
Effects of pollen reward removal on fecundity in a self-incompatible hermaphrodite plant / Duffy, K. J.; Johnson, S. D.. - In: PLANT BIOLOGY. - ISSN 1435-8603. - 13:3(2011), pp. 556-560. [10.1111/j.1438-8677.2011.00445.x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/717616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact