In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF (p, Ω) of the anisotropic p-Laplacian, 1 < p < +∞. Our aim is to enhance, by means of the P-function method, how it is possible to get several sharp estimates for λF (p, Ω) in terms of several geometric quantities associated to the domain. The P-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.

Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle / DELLA PIETRA, Francesco; DI BLASIO, Giuseppina; Gavitone, Nunzia. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 9:1(2020), pp. 278-291. [10.1515/anona-2017-0281]

Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle

Della Pietra Francesco
;
di Blasio Giuseppina;Gavitone Nunzia
2020

Abstract

In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF (p, Ω) of the anisotropic p-Laplacian, 1 < p < +∞. Our aim is to enhance, by means of the P-function method, how it is possible to get several sharp estimates for λF (p, Ω) in terms of several geometric quantities associated to the domain. The P-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.
2020
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle / DELLA PIETRA, Francesco; DI BLASIO, Giuseppina; Gavitone, Nunzia. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 9:1(2020), pp. 278-291. [10.1515/anona-2017-0281]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/726524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact