In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.

Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia / Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea. - In: JOURNAL OF PSYCHOPHARMACOLOGY. - ISSN 0269-8811. - 31:4(2017), pp. 406-417-417. [10.1177/0269881116658987]

Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia

Buonaguro, Elisabetta F
Writing – Original Draft Preparation
;
Tomasetti, Carmine
Investigation
;
Chiodini, Paolo
Formal Analysis
;
Marmo, Federica
Investigation
;
Latte, Gianmarco
Investigation
;
Rossi, Rodolfo
Investigation
;
Avvisati, Livia;Iasevoli, Felice
Writing – Review & Editing
;
de Bartolomeis, Andrea
Conceptualization
2017

Abstract

In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.
2017
Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia / Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea. - In: JOURNAL OF PSYCHOPHARMACOLOGY. - ISSN 0269-8811. - 31:4(2017), pp. 406-417-417. [10.1177/0269881116658987]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/727326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact