In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.
Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization / Antolin, P.; Buffa, A.; Calabrò, F.; Martinelli, M.; Sangalli, G.. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 285:(2015), pp. 817-828. [10.1016/j.cma.2014.12.013]
Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization
Calabrò F.;
2015
Abstract
In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.File | Dimensione | Formato | |
---|---|---|---|
CMAME_ABCMS_2015.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
512.58 kB
Formato
Adobe PDF
|
512.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.