Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments.
Wilms tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair / Lopez-Baez, Juan Carlos; Simpson, Daniel J.; Forero, Laura LLeras; Zeng, Zhiqiang; Brunsdon, Hannah; Salzano, Angela; Brombin, Alessandro; Wyatt, Cameron; Rybski, Witold; Huitema, Leonie F. A.; Dale, Rodney M.; Kawakami, Koichi; Englert, Christoph; Chandra, Tamir; Schulte-Merker, Stefan; Hastie, Nicholas D.; Patton, E. Elizabeth. - In: ELIFE. - ISSN 2050-084X. - 7:(2018). [10.7554/eLife.30657]
Wilms tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair
Salzano, Angela;
2018
Abstract
Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments.File | Dimensione | Formato | |
---|---|---|---|
2018 Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.