We discuss a possible noncommutative generalization of the notion of an equivariant vector bundle. Let $A$ be a $mathbb{K}$-algebra, $M$ a left $A$-module, $H$ a Hopf $mathbb{K}$-algebra, $delta:A to H otimes A:=H otimes_mathbb{K} A$ an algebra coaction, and let $(H otimes A)_delta$ denote $H otimes A$ with the right $A$-module structure induced by $delta$. The usual definitions of equivariant vector bundle naturally lead, in the context of $mathbb{K}$-algebras, to an $(Hotimes A)$-module homomorphism [Theta: H otimes M to (H otimes A)_delta otimes_AM] that fulfills some appropriate conditions. On the other hand, sometimes an $(A,H)$-Hopf module is considered instead, for the same purpose. When $Theta$ is invertible, as is always the case when $H$ is commutative, the two descriptions are equivalent. We point out that the two notions differ in general, by giving an example of a noncommutative Hopf algebra $H$ for which there exists such a $Theta$ that is not invertible and a left-right $(A,H)$-Hopf module whose corresponding homomorphism $M otimes H to (A otimes H) $ is not an isomorphism.

On noncommutative equivariant bundles / D’Andrea, Francesco; De Paris, Alessandro. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 47:12(2019), pp. 5443-5461. [10.1080/00927872.2019.1631320]

On noncommutative equivariant bundles

D’Andrea, Francesco;De Paris, Alessandro
2019

Abstract

We discuss a possible noncommutative generalization of the notion of an equivariant vector bundle. Let $A$ be a $mathbb{K}$-algebra, $M$ a left $A$-module, $H$ a Hopf $mathbb{K}$-algebra, $delta:A to H otimes A:=H otimes_mathbb{K} A$ an algebra coaction, and let $(H otimes A)_delta$ denote $H otimes A$ with the right $A$-module structure induced by $delta$. The usual definitions of equivariant vector bundle naturally lead, in the context of $mathbb{K}$-algebras, to an $(Hotimes A)$-module homomorphism [Theta: H otimes M to (H otimes A)_delta otimes_AM] that fulfills some appropriate conditions. On the other hand, sometimes an $(A,H)$-Hopf module is considered instead, for the same purpose. When $Theta$ is invertible, as is always the case when $H$ is commutative, the two descriptions are equivalent. We point out that the two notions differ in general, by giving an example of a noncommutative Hopf algebra $H$ for which there exists such a $Theta$ that is not invertible and a left-right $(A,H)$-Hopf module whose corresponding homomorphism $M otimes H to (A otimes H) $ is not an isomorphism.
2019
On noncommutative equivariant bundles / D’Andrea, Francesco; De Paris, Alessandro. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 47:12(2019), pp. 5443-5461. [10.1080/00927872.2019.1631320]
File in questo prodotto:
File Dimensione Formato  
AuthorVersionCIA4.pdf

Open Access dal 28/06/2020

Descrizione: Testo completo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 371.21 kB
Formato Adobe PDF
371.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/757214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact