Global Stellar Formation Rates or SFRs are crucial to constrain theories of galaxy formation and evolution. SFR's are usually estimated via spectroscopic observations which require too much previous telescope time and therefore cannot match the needs of modern precision cosmology. We therefore propose a novel method to estimate SFRs for large samples of galaxies using a variety of supervised ML models. © ESANN 2018 - Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.

Stellar formation rates in galaxies using Machine Learning models / Delli Veneri, M.; Cavuoti, S.; Brescia, M.; Riccio, G.; Longo, G.. - (2018), pp. 333-338. (Intervento presentato al convegno 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2018; Bruges; Belgium; 25 April 2018 through 27 April 2018; Code 149253 tenutosi a Bruges, Belgium nel 25-27 April 2018).

Stellar formation rates in galaxies using Machine Learning models

Delli Veneri, M.
;
Cavuoti, S.;Brescia, M.;Longo, G.
2018

Abstract

Global Stellar Formation Rates or SFRs are crucial to constrain theories of galaxy formation and evolution. SFR's are usually estimated via spectroscopic observations which require too much previous telescope time and therefore cannot match the needs of modern precision cosmology. We therefore propose a novel method to estimate SFRs for large samples of galaxies using a variety of supervised ML models. © ESANN 2018 - Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.
2018
9782875870476
Stellar formation rates in galaxies using Machine Learning models / Delli Veneri, M.; Cavuoti, S.; Brescia, M.; Riccio, G.; Longo, G.. - (2018), pp. 333-338. (Intervento presentato al convegno 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2018; Bruges; Belgium; 25 April 2018 through 27 April 2018; Code 149253 tenutosi a Bruges, Belgium nel 25-27 April 2018).
File in questo prodotto:
File Dimensione Formato  
122-DelliVeneri-es2018-100.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/757778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact