Parkinson's disease (PD) is the second most common neurodegenerative disorder in the world, while Progressive Supranuclear Palsy (PSP) is an atypical Parkinsonism resembling PD, especially in early stage. Assumed that gait dysfunctions represent a major motor symptom for both pathologies, gait analysis can provide clinicians with subclinical information reflecting subtle differences between these diseases. In this scenario, data mining can be exploited in order to differentiate PD patients at different stages of the disease course and PSP using all the variables acquired through gait analysis.

Using gait analysis’ parameters to classify Parkinsonism: A data mining approach / Ricciardi, C.; Amboni, M.; De Santis, C.; Improta, G.; Volpe, G.; Iuppariello, L.; Ricciardelli, G.; D'Addio, G.; Vitale, C.; Barone, P.; Cesarelli, M.. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. - ISSN 0169-2607. - 180:(2019), p. 105033. [10.1016/j.cmpb.2019.105033]

Using gait analysis’ parameters to classify Parkinsonism: A data mining approach

Ricciardi C.;Improta G.;Iuppariello L.;Cesarelli M.
2019

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder in the world, while Progressive Supranuclear Palsy (PSP) is an atypical Parkinsonism resembling PD, especially in early stage. Assumed that gait dysfunctions represent a major motor symptom for both pathologies, gait analysis can provide clinicians with subclinical information reflecting subtle differences between these diseases. In this scenario, data mining can be exploited in order to differentiate PD patients at different stages of the disease course and PSP using all the variables acquired through gait analysis.
2019
Using gait analysis’ parameters to classify Parkinsonism: A data mining approach / Ricciardi, C.; Amboni, M.; De Santis, C.; Improta, G.; Volpe, G.; Iuppariello, L.; Ricciardelli, G.; D'Addio, G.; Vitale, C.; Barone, P.; Cesarelli, M.. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. - ISSN 0169-2607. - 180:(2019), p. 105033. [10.1016/j.cmpb.2019.105033]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/776516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 48
social impact