Bounds are obtained for the efficiency or mean to peak ratio E(Ω) for the first Dirichlet eigenfunction (positive) for open, connected sets Ω with finite measure in Euclidean space $R^m$. It is shown that (i) localisation implies vanishing efficiency, (ii) a vanishing upper bound for the efficiency implies localisation, (iii) localisation occurs for the first Dirichlet eigenfunctions for a wide class of elongating bounded, open, convex and planar sets, (iv) if Ωn is any quadrilateral with perpendicular diagonals of lengths 1 and n respectively, then the sequence of first Dirichlet eigenfunctions localises, and E(Ωn)=O(n−2/3logn). This disproves some claims in the literature. A key technical tool is the Feynman-Kac formula.

Efficiency and localisation for the first Dirichlet eigenfunction / VAN DEN BERG, Michiel; DELLA PIETRA, Francesco; DI BLASIO, Giuseppina; Gavitone, Nunzia. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 11:3(2021), pp. 981-1003. [10.4171/JST/363]

Efficiency and localisation for the first Dirichlet eigenfunction

van den Berg Michiel
;
Della Pietra Francesco;di Blasio Giuseppina;Gavitone Nunzia
2021

Abstract

Bounds are obtained for the efficiency or mean to peak ratio E(Ω) for the first Dirichlet eigenfunction (positive) for open, connected sets Ω with finite measure in Euclidean space $R^m$. It is shown that (i) localisation implies vanishing efficiency, (ii) a vanishing upper bound for the efficiency implies localisation, (iii) localisation occurs for the first Dirichlet eigenfunctions for a wide class of elongating bounded, open, convex and planar sets, (iv) if Ωn is any quadrilateral with perpendicular diagonals of lengths 1 and n respectively, then the sequence of first Dirichlet eigenfunctions localises, and E(Ωn)=O(n−2/3logn). This disproves some claims in the literature. A key technical tool is the Feynman-Kac formula.
2021
Efficiency and localisation for the first Dirichlet eigenfunction / VAN DEN BERG, Michiel; DELLA PIETRA, Francesco; DI BLASIO, Giuseppina; Gavitone, Nunzia. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - 11:3(2021), pp. 981-1003. [10.4171/JST/363]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/790409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact