In this paper we obtain comparison results for the quasilinear equation $-Delta_p,x u - u_yy = f$ with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable $x$, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in $y$, and the proof of a comparison principle for the discrete version of the auxiliary problem $A U - U_yy le int_0^s f^*$, where $AU = (nomega^1/ns^1/n' )^p (- U_ss)^p-1$. We show that this operator is T-accretive in $L^infty$. We extend our results for $-Delta_p,x$ to general operators of the form $-mathrmdiv (a(| abla_x u|) abla_x u)$ where $a$ is non-decreasing and behaves like $| cdot |^p-2$ at infinity.

Steiner symmetrization for anisotropic quasilinear equations via partial discretization / Brock, Friedemann; Ildefonso Díaz, Jesús; Ferone, Adele; Gómez-Castro, David; Mercaldo, Anna. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 38:(2021), pp. 347-368. [10.1016/j.anihpc.2020.07.005]

Steiner symmetrization for anisotropic quasilinear equations via partial discretization

Anna Mercaldo
2021

Abstract

In this paper we obtain comparison results for the quasilinear equation $-Delta_p,x u - u_yy = f$ with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable $x$, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in $y$, and the proof of a comparison principle for the discrete version of the auxiliary problem $A U - U_yy le int_0^s f^*$, where $AU = (nomega^1/ns^1/n' )^p (- U_ss)^p-1$. We show that this operator is T-accretive in $L^infty$. We extend our results for $-Delta_p,x$ to general operators of the form $-mathrmdiv (a(| abla_x u|) abla_x u)$ where $a$ is non-decreasing and behaves like $| cdot |^p-2$ at infinity.
2021
Steiner symmetrization for anisotropic quasilinear equations via partial discretization / Brock, Friedemann; Ildefonso Díaz, Jesús; Ferone, Adele; Gómez-Castro, David; Mercaldo, Anna. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 38:(2021), pp. 347-368. [10.1016/j.anihpc.2020.07.005]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/797934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact