In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DCF), sulfamethoxazole (SMX) and carbamazepine (CBZ). Comparison of the degradation rates for both ozonation and combined ultrasound/ozonation treatments was performed on single synthetic solutions as well as on a mixture of the selected pharmaceuticals, under different experimental conditions. For single synthetic solutions, the efficiency removal for ozonation reached 73%, 51% and 59% after 40 min for DCF, SMX and CBZ, respectively. Comparable results were obtained for pharmaceuticals in mixture. However, the combined ultrasound/ozone treatment was found to increase degradation efficiencies for both DCF and SMX single solutions up to 94% and 61%, respectively, whereas lower removal yields, up to 56%, was noted for CBZ. Likewise, when the combined treatment was applied to the mixture, relatively low removal efficiencies was found for CBZ (44%) and 90% degradation yield was achieved for DCF.
Enhanced ozonation of selected pharmaceutical compounds by sonolysis / Naddeo, Vincenzo; Uyguner Demirel, Ceyda Senem; Prado, Moriel; Cesaro, Alessandra; Belgiorno, Vincenzo; Ballesteros, Florencio. - In: ENVIRONMENTAL TECHNOLOGY. - ISSN 0959-3330. - 36:(2015), pp. 1876-1883. [10.1080/09593330.2015.1014864]
Enhanced ozonation of selected pharmaceutical compounds by sonolysis
CESARO, ALESSANDRA;BELGIORNO, Vincenzo;
2015
Abstract
In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DCF), sulfamethoxazole (SMX) and carbamazepine (CBZ). Comparison of the degradation rates for both ozonation and combined ultrasound/ozonation treatments was performed on single synthetic solutions as well as on a mixture of the selected pharmaceuticals, under different experimental conditions. For single synthetic solutions, the efficiency removal for ozonation reached 73%, 51% and 59% after 40 min for DCF, SMX and CBZ, respectively. Comparable results were obtained for pharmaceuticals in mixture. However, the combined ultrasound/ozone treatment was found to increase degradation efficiencies for both DCF and SMX single solutions up to 94% and 61%, respectively, whereas lower removal yields, up to 56%, was noted for CBZ. Likewise, when the combined treatment was applied to the mixture, relatively low removal efficiencies was found for CBZ (44%) and 90% degradation yield was achieved for DCF.File | Dimensione | Formato | |
---|---|---|---|
Naddeo et al, 2015_Environ Technol.pdf
non disponibili
Dimensione
719.41 kB
Formato
Adobe PDF
|
719.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.