Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α [0, 1], we consider Aα (G) = αD(G) + (1-α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα-spectral radius of G. We first show that the smallest limit point for the Aα-spectral radius of graphs is 2, and then we characterize the connected graphs whose Aα-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their Aα-spectra.

Graphs Whose Aα-Spectral Radius Does Not Exceed 2 / Wang, J. F.; Wang, J.; Liu, X.; Belardo, F.. - In: DISCUSSIONES MATHEMATICAE. GRAPH THEORY. - ISSN 1234-3099. - 40:2(2020), pp. 677-690. [10.7151/dmgt.2288]

Graphs Whose Aα-Spectral Radius Does Not Exceed 2

Belardo F.
2020

Abstract

Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α [0, 1], we consider Aα (G) = αD(G) + (1-α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα-spectral radius of G. We first show that the smallest limit point for the Aα-spectral radius of graphs is 2, and then we characterize the connected graphs whose Aα-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their Aα-spectra.
2020
Graphs Whose Aα-Spectral Radius Does Not Exceed 2 / Wang, J. F.; Wang, J.; Liu, X.; Belardo, F.. - In: DISCUSSIONES MATHEMATICAE. GRAPH THEORY. - ISSN 1234-3099. - 40:2(2020), pp. 677-690. [10.7151/dmgt.2288]
File in questo prodotto:
File Dimensione Formato  
DMGT-2288.pdf

accesso aperto

Descrizione: Articolo in Post-print versione Editore
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 203.11 kB
Formato Adobe PDF
203.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/805718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact