Organic Amendments (OAs) has been used in agroecosystems to promote plant growth and control diseases caused by soilborne pathogens. However, the role of OAs chemistry and decomposition time on plant growth promotion and disease suppression is still poorly explored. In this work, we studied the effect of 14 OAs at four decomposition ages (3, 30, 100, and 300 days) on the plant-pathogen system Lactuca sativa-Rhizoctonia solani. OAs chemistry was characterized via 13C-CPMAS NMR spectroscopy as well as for standard chemical (i.e. N content, pH, EC) and biological parameters (i.e. phytotoxicity and R. solani proliferation bioassay). OAs have shown variable effects, ranging from inhibition to stimulation of Lactuca sativa and Lepidium sativum growth. We recorded that N rich OAs with high decomposability were conducive in the short-term, while converting suppressive in the long term (300 days). On the other hand, cellulose-rich OAs with high C/N ratio impaired L. sativa growth but were more consistent in providing protection from damping-off, although this property has significantly shifted during decomposition time. These results, for the first time, highlight a consistent trade-off between plant growth promotion and disease control capability of OAs. Finally, we found that OAs effects on growth promotion and disease protection can be hardly predictable based on the chemical characteristic, although N content and some 13C CPMAS NMR regions (alkyl C, methoxyl C, and carbonyl C) showed some significant correlations. Therefore, further investigations are needed to identify the mechanism(s) behind the observed suppressive and conducive effects and to identify OAs types and application timing that optimize plant productivity and disease suppression in different agroecosystems.
Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off / Bonanomi, G.; Zotti, M.; Idbella, M.; Di Silverio, N.; Carrino, L.; Cesarano, G.; Assaeed, A. M.; Abd-ElGawad, A. M.. - In: PLOS ONE. - ISSN 1932-6203. - 15:4(2020), p. e0230925. [10.1371/journal.pone.0230925]
Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off
Bonanomi G.
;Zotti M.;Di Silverio N.;Cesarano G.;
2020
Abstract
Organic Amendments (OAs) has been used in agroecosystems to promote plant growth and control diseases caused by soilborne pathogens. However, the role of OAs chemistry and decomposition time on plant growth promotion and disease suppression is still poorly explored. In this work, we studied the effect of 14 OAs at four decomposition ages (3, 30, 100, and 300 days) on the plant-pathogen system Lactuca sativa-Rhizoctonia solani. OAs chemistry was characterized via 13C-CPMAS NMR spectroscopy as well as for standard chemical (i.e. N content, pH, EC) and biological parameters (i.e. phytotoxicity and R. solani proliferation bioassay). OAs have shown variable effects, ranging from inhibition to stimulation of Lactuca sativa and Lepidium sativum growth. We recorded that N rich OAs with high decomposability were conducive in the short-term, while converting suppressive in the long term (300 days). On the other hand, cellulose-rich OAs with high C/N ratio impaired L. sativa growth but were more consistent in providing protection from damping-off, although this property has significantly shifted during decomposition time. These results, for the first time, highlight a consistent trade-off between plant growth promotion and disease control capability of OAs. Finally, we found that OAs effects on growth promotion and disease protection can be hardly predictable based on the chemical characteristic, although N content and some 13C CPMAS NMR regions (alkyl C, methoxyl C, and carbonyl C) showed some significant correlations. Therefore, further investigations are needed to identify the mechanism(s) behind the observed suppressive and conducive effects and to identify OAs types and application timing that optimize plant productivity and disease suppression in different agroecosystems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.