The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré-Sobolev constant for the embeddings W 0 1,2 (ω) {right arrow, hooked} Lq(ω).

Faber-Krahn inequalities in sharp quantitative form / Brasco, L.; De Philippis, G.; Velichkov, B.. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 164:9(2015), pp. 1777-1831. [10.1215/00127094-3120167]

Faber-Krahn inequalities in sharp quantitative form

Brasco L.;De Philippis G.;Velichkov B.
2015

Abstract

The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré-Sobolev constant for the embeddings W 0 1,2 (ω) {right arrow, hooked} Lq(ω).
2015
Faber-Krahn inequalities in sharp quantitative form / Brasco, L.; De Philippis, G.; Velichkov, B.. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 164:9(2015), pp. 1777-1831. [10.1215/00127094-3120167]
File in questo prodotto:
File Dimensione Formato  
2015 DUKE.pdf

solo utenti autorizzati

Licenza: Accesso privato/ristretto
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/840452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 69
social impact