Recent work in the literature has shown that general relativity can be formulated in terms of a jet bundle which, in local coordinates, has five entries: local coordinates on Lorentzian space-time, tetrads, connection one-forms, multivelocities corresponding to the tetrads and multivelocities corresponding to the connection one-forms. The derivatives of the Lagrangian with respect to the latter class of multivelocities give rise to a set of multimomenta which naturally occur in the constraint equations. Interestingly, all the constraint equations of general relativity are linear in terms of this class of multimomenta. This construction has been then extended to complex general relativity, where Lorentzian space-time is replaced by a four-complex-dimensional complex-Riemannian manifold. One then finds a holomorphic theory where the familiar constraint equations are replaced by a set of equations linear in the holomorphic multimomenta, providing such multimomenta vanish on a family of two-complex-dimensional surfaces. In quantum gravity, the problem arises to quantize a real or a holomorphic theory on the extended space where the multimomenta can be defined.
Linear form of canonical gravity / Esposito, G; Stornaiolo, C. - In: IL NUOVO CIMENTO DELLA SOCIETÀ ITALIANA DI FISICA. B, GENERAL PHYSICS, RELATIVITY, ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS. - ISSN 1594-9982. - 111B:2(1996), pp. 271-274. [10.1007/bf02724650]
Linear form of canonical gravity
ESPOSITO GPrimo
;
1996
Abstract
Recent work in the literature has shown that general relativity can be formulated in terms of a jet bundle which, in local coordinates, has five entries: local coordinates on Lorentzian space-time, tetrads, connection one-forms, multivelocities corresponding to the tetrads and multivelocities corresponding to the connection one-forms. The derivatives of the Lagrangian with respect to the latter class of multivelocities give rise to a set of multimomenta which naturally occur in the constraint equations. Interestingly, all the constraint equations of general relativity are linear in terms of this class of multimomenta. This construction has been then extended to complex general relativity, where Lorentzian space-time is replaced by a four-complex-dimensional complex-Riemannian manifold. One then finds a holomorphic theory where the familiar constraint equations are replaced by a set of equations linear in the holomorphic multimomenta, providing such multimomenta vanish on a family of two-complex-dimensional surfaces. In quantum gravity, the problem arises to quantize a real or a holomorphic theory on the extended space where the multimomenta can be defined.File | Dimensione | Formato | |
---|---|---|---|
NUCIA,B111,271.pdf
non disponibili
Dimensione
176.99 kB
Formato
Adobe PDF
|
176.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.