We study, in dimension n > 2, the eigenvalue problem and the torsional rigidity for the p-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions. We prove that the annulus maximizes the Frst eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are FIxed.
Sharp estimates for the first p -Laplacian eigenvalue and for the p -torsional rigidity on convex sets with holes / Paoli, G.; Piscitelli, G.; Trani, L.. - In: ESAIM. COCV. - ISSN 1292-8119. - 26:(2020), p. 111. [10.1051/cocv/2020033]
Sharp estimates for the first p -Laplacian eigenvalue and for the p -torsional rigidity on convex sets with holes
Paoli G.;Piscitelli G.;Trani L.
2020
Abstract
We study, in dimension n > 2, the eigenvalue problem and the torsional rigidity for the p-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions. We prove that the annulus maximizes the Frst eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are FIxed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.