We analyze the limiting problem for the anisotropic p-Laplacian (p → ∞) on convex sets, with the mean of the viscosity solution. We also prove some geometric properties of eigenvalues and eigenfunctions. In particular, we show the validity of a Szegö-Weinberger type inequality.

The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions / Piscitelli, G.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 705-734.

The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions

Piscitelli G.
2019

Abstract

We analyze the limiting problem for the anisotropic p-Laplacian (p → ∞) on convex sets, with the mean of the viscosity solution. We also prove some geometric properties of eigenvalues and eigenfunctions. In particular, we show the validity of a Szegö-Weinberger type inequality.
2019
The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions / Piscitelli, G.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 705-734.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/859558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact