We analyze the limiting problem for the anisotropic p-Laplacian (p → ∞) on convex sets, with the mean of the viscosity solution. We also prove some geometric properties of eigenvalues and eigenfunctions. In particular, we show the validity of a Szegö-Weinberger type inequality.
The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions / Piscitelli, G.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 705-734.
The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions
Piscitelli G.
2019
Abstract
We analyze the limiting problem for the anisotropic p-Laplacian (p → ∞) on convex sets, with the mean of the viscosity solution. We also prove some geometric properties of eigenvalues and eigenfunctions. In particular, we show the validity of a Szegö-Weinberger type inequality.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.