A quaternion unit gain graph is a graph where each orientation of an edge is given a quaternion unit, which is the inverse of the quaternion unit assigned to the opposite orientation. In this paper we define the adjacency, Laplacian and incidence matrices for a quaternion unit gain graph and study their properties. These properties generalize several fundamental results from spectral graph theory of ordinary graphs, signed graphs and complex unit gain graphs. Bounds for both the left and right eigenvalues of the adjacency and Laplacian matrix are developed, and the right eigenvalues for the cycle and path graphs are explicitly calculated.

Spectra of quaternion unit gain graphs / Belardo, F.; Brunetti, M.; Coble, N. J.; Reff, N.; Skogman, H.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 632:(2022), pp. 15-49. [10.1016/j.laa.2021.09.009]

Spectra of quaternion unit gain graphs

Belardo F.;Brunetti M.;
2022

Abstract

A quaternion unit gain graph is a graph where each orientation of an edge is given a quaternion unit, which is the inverse of the quaternion unit assigned to the opposite orientation. In this paper we define the adjacency, Laplacian and incidence matrices for a quaternion unit gain graph and study their properties. These properties generalize several fundamental results from spectral graph theory of ordinary graphs, signed graphs and complex unit gain graphs. Bounds for both the left and right eigenvalues of the adjacency and Laplacian matrix are developed, and the right eigenvalues for the cycle and path graphs are explicitly calculated.
2022
Spectra of quaternion unit gain graphs / Belardo, F.; Brunetti, M.; Coble, N. J.; Reff, N.; Skogman, H.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 632:(2022), pp. 15-49. [10.1016/j.laa.2021.09.009]
File in questo prodotto:
File Dimensione Formato  
Spectra of quaternion unit gain graphs.pdf

non disponibili

Descrizione: Articolo in Post-print versione Editore
Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 679.79 kB
Formato Adobe PDF
679.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/861563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact