We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by{−Δpu=fuγ+guqinΩ,u=0on∂Ω, where Ω is an open bounded subset of ℝN where Ω is an open bounded subset of ℝN, Δpu := ÷(|∇u|p− 2∇u) is the usual p-Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue spaces.

Comparison Principle for Elliptic Equations with Mixed Singular Nonlinearities / Durastanti, R.; Oliva, F.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - (2022). [10.1007/s11118-021-09906-3]

Comparison Principle for Elliptic Equations with Mixed Singular Nonlinearities

Durastanti R.;Oliva F.
2022

Abstract

We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by{−Δpu=fuγ+guqinΩ,u=0on∂Ω, where Ω is an open bounded subset of ℝN where Ω is an open bounded subset of ℝN, Δpu := ÷(|∇u|p− 2∇u) is the usual p-Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue spaces.
2022
Comparison Principle for Elliptic Equations with Mixed Singular Nonlinearities / Durastanti, R.; Oliva, F.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - (2022). [10.1007/s11118-021-09906-3]
File in questo prodotto:
File Dimensione Formato  
DO 2021 ComparisonPrincipleForElliptic equations with mixed singular nonlinearities.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 401.04 kB
Formato Adobe PDF
401.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/867699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact