An integral representation result on regular functions is proved for the o -limit of a sequence of integral functionals defined in the vectorial case and modelled on elasticity theory functional Z z f (( x , e ( u )) dx where convex lagrangians satisfy a non-standard estimate $$ -c_{0} + c_{1} | \xi|^{alpha }leq f ( (x,\xi ) leq c_{0} + c_{2} | \xi|^{eta },quad 1 lt alpha leq eta lt rac {nalpha }{n-alpha },enskip c_{0}geq 0,enskip c_{1},c_{2} gt 0. $$ When the limit integrand does not show Lavrent'ev phenomenon the representation result is also true on the whole space W 1, f ( z ; R n ).

An Integral representation result for the Gamma-limit of functionals with non standard growth conditions in the case of elasticity / Cardone, G; A., CORBO ESPOSITO; V. V., Zhikov. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - 81:(2002), pp. 1179-1195. [10.1080/0003681021000029873]

An Integral representation result for the Gamma-limit of functionals with non standard growth conditions in the case of elasticity

CARDONE G
;
2002

Abstract

An integral representation result on regular functions is proved for the o -limit of a sequence of integral functionals defined in the vectorial case and modelled on elasticity theory functional Z z f (( x , e ( u )) dx where convex lagrangians satisfy a non-standard estimate $$ -c_{0} + c_{1} | \xi|^{alpha }leq f ( (x,\xi ) leq c_{0} + c_{2} | \xi|^{eta },quad 1 lt alpha leq eta lt rac {nalpha }{n-alpha },enskip c_{0}geq 0,enskip c_{1},c_{2} gt 0. $$ When the limit integrand does not show Lavrent'ev phenomenon the representation result is also true on the whole space W 1, f ( z ; R n ).
2002
An Integral representation result for the Gamma-limit of functionals with non standard growth conditions in the case of elasticity / Cardone, G; A., CORBO ESPOSITO; V. V., Zhikov. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - 81:(2002), pp. 1179-1195. [10.1080/0003681021000029873]
File in questo prodotto:
File Dimensione Formato  
CardoneCorboZhikovApplAn2002.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 187.63 kB
Formato Adobe PDF
187.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/872279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact