In this letter, we present a data-driven condition-monitoring system for a moka pot aiming at anomaly detection in the coffee-preparation process. A data-acquisition system and the corresponding generation process of a comprehensive dataset (including data from ideal and anomalous brewing scenarios) are described. Supervised and unsupervised machine learning algorithms are trained and tested on the dataset aiming at detecting anomalies in the process and showing the relevance of the considered framework.

Digital moka: Small-scale condition monitoring in process engineering / Bairampalli, S. N.; Ustolin, F.; Ciuonzo, D.; Rossi, P. S.. - In: IEEE SENSORS LETTERS. - ISSN 2475-1472. - 5:3(2021), pp. 1-4. [10.1109/LSENS.2021.3059850]

Digital moka: Small-scale condition monitoring in process engineering

Ciuonzo D.;
2021

Abstract

In this letter, we present a data-driven condition-monitoring system for a moka pot aiming at anomaly detection in the coffee-preparation process. A data-acquisition system and the corresponding generation process of a comprehensive dataset (including data from ideal and anomalous brewing scenarios) are described. Supervised and unsupervised machine learning algorithms are trained and tested on the dataset aiming at detecting anomalies in the process and showing the relevance of the considered framework.
2021
Digital moka: Small-scale condition monitoring in process engineering / Bairampalli, S. N.; Ustolin, F.; Ciuonzo, D.; Rossi, P. S.. - In: IEEE SENSORS LETTERS. - ISSN 2475-1472. - 5:3(2021), pp. 1-4. [10.1109/LSENS.2021.3059850]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/873268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact