We prove Lp bounds for the extensions of standard multilinear Calderón–Zygmund operators to tuples of UMD spaces tied by a natural product structure. The product can, for instance, mean the pointwise product in UMD function lattices, or the composition of operators in the Schatten-von Neumann subclass of the algebra of bounded operators on a Hilbert space. We do not require additional assumptions beyond UMD on each space—in contrast to previous results, we e.g. show that the Rademacher maximal function property is not necessary. The obtained generality allows for novel applications. For instance, we prove new versions of fractional Leibniz rules via our results concerning the boundedness of multilinear singular integrals in non-commutative Lp spaces. Our proof techniques combine a novel scheme of induction on the multilinearity index with dyadic-probabilistic techniques in the UMD space setting.

Multilinear singular integrals on non-commutative Lp spaces / Di Plinio, F.; Li, K.; Martikainen, H.; Vuorinen, E.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 378:3-4(2020), pp. 1371-1414. [10.1007/s00208-020-02068-4]

Multilinear singular integrals on non-commutative Lp spaces

Di Plinio F.;
2020

Abstract

We prove Lp bounds for the extensions of standard multilinear Calderón–Zygmund operators to tuples of UMD spaces tied by a natural product structure. The product can, for instance, mean the pointwise product in UMD function lattices, or the composition of operators in the Schatten-von Neumann subclass of the algebra of bounded operators on a Hilbert space. We do not require additional assumptions beyond UMD on each space—in contrast to previous results, we e.g. show that the Rademacher maximal function property is not necessary. The obtained generality allows for novel applications. For instance, we prove new versions of fractional Leibniz rules via our results concerning the boundedness of multilinear singular integrals in non-commutative Lp spaces. Our proof techniques combine a novel scheme of induction on the multilinearity index with dyadic-probabilistic techniques in the UMD space setting.
2020
Multilinear singular integrals on non-commutative Lp spaces / Di Plinio, F.; Li, K.; Martikainen, H.; Vuorinen, E.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 378:3-4(2020), pp. 1371-1414. [10.1007/s00208-020-02068-4]
File in questo prodotto:
File Dimensione Formato  
4-MathAnn.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 668.52 kB
Formato Adobe PDF
668.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/879970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact