The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
A stroll through the loop-tree duality / Aguilera-Verdugo, J. J.; Driencourt-Mangin, F.; Hernandez-Pinto, R. J.; Plenter, J.; Prisco, R. M.; Ramirez-Uribe, N. S.; Renteria-Olivo, A. E.; Rodrigo, G.; Sborlini, G.; Torres Bobadilla, W. J.; Tramontano, F.. - In: SYMMETRY. - ISSN 2073-8994. - 13:6(2021), p. 1029. [10.3390/sym13061029]
A stroll through the loop-tree duality
Prisco R. M.;Tramontano F.
2021
Abstract
The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.File | Dimensione | Formato | |
---|---|---|---|
symmetry-13-01029.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.