Let Θ ⊂ S1 be a lacunary set of directions of order D. We show that the maximal directional Hilbert transform HΘf(x):=supv∈Θ|p.v∫Rf(x+tv)dtt| obeys the bounds ||HΘ||Lp→Lp ≃p,D (log#Θ) 1/2, for all 1 < p < ∞. For vector fields vD with range in a lacunary set of order D and generated using suitable combinations of truncations of Lipschitz functions, we prove that the truncated Hilbert transform along the vector field vD, HvD,1f(x):=p.v.∫|t|≤1f(x+tvD(x))dtt, satisfies the bounds ||HvD,1||Lp→Lp ≲p,D 1 for all 1 < p < ∞. These results extend previous bounds of the first author with Demeter, and of Guo and Thiele.

A sharp estimate for the Hilbert transform along finite order lacunary sets of directions / Di Plinio, F.; Parissis, I.. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 227:1(2018), pp. 189-214. [10.1007/s11856-018-1724-y]

A sharp estimate for the Hilbert transform along finite order lacunary sets of directions

Di Plinio F.
;
2018

Abstract

Let Θ ⊂ S1 be a lacunary set of directions of order D. We show that the maximal directional Hilbert transform HΘf(x):=supv∈Θ|p.v∫Rf(x+tv)dtt| obeys the bounds ||HΘ||Lp→Lp ≃p,D (log#Θ) 1/2, for all 1 < p < ∞. For vector fields vD with range in a lacunary set of order D and generated using suitable combinations of truncations of Lipschitz functions, we prove that the truncated Hilbert transform along the vector field vD, HvD,1f(x):=p.v.∫|t|≤1f(x+tvD(x))dtt, satisfies the bounds ||HvD,1||Lp→Lp ≲p,D 1 for all 1 < p < ∞. These results extend previous bounds of the first author with Demeter, and of Guo and Thiele.
2018
A sharp estimate for the Hilbert transform along finite order lacunary sets of directions / Di Plinio, F.; Parissis, I.. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 227:1(2018), pp. 189-214. [10.1007/s11856-018-1724-y]
File in questo prodotto:
File Dimensione Formato  
DiPlinio-Parissis2018_Article_ASharpEstimateForTheHilbertTra.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 477.24 kB
Formato Adobe PDF
477.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/880169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact