This paper is concerned with the integrodi erential equation arising in the Coleman-Gurtin's theory of heat conduction with hereditary memory, in presence of a nonlinearity ' of critical growth. Rephrasing the equation within the history space framework, we prove the existence of global and exponential attractors of optimal regularity and finite fractal dimension for the related solution semigroup, acting both on the basic weak-energy space and on a more regular phase space.
Asymptotics of the coleman-gurtin model / Chekroun, M. D.; Di Plinio, F.; Glatt-Holtz, N. E.; Pata, V.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 4:2(2011), pp. 351-369. [10.3934/dcdss.2011.4.351]
Asymptotics of the coleman-gurtin model
Di Plinio F.;
2011
Abstract
This paper is concerned with the integrodi erential equation arising in the Coleman-Gurtin's theory of heat conduction with hereditary memory, in presence of a nonlinearity ' of critical growth. Rephrasing the equation within the history space framework, we prove the existence of global and exponential attractors of optimal regularity and finite fractal dimension for the related solution semigroup, acting both on the basic weak-energy space and on a more regular phase space.File | Dimensione | Formato | |
---|---|---|---|
cdgp_5.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Accesso privato/ristretto
Dimensione
403.29 kB
Formato
Adobe PDF
|
403.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.