We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Oscillon equation ∂ttu(x, t)+H∂tu(x, t)-e-2Ht∂xxu(x, t)+V '(u(x, t)) = 0, (x, t) ε (0, 1) × ℝ, with periodic boundary conditions, where H > 0 is the Hubble constant and V is a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular global attractor A = A(t). The kernel sections A(t) have finite fractal dimension.
Time-dependent attractor for the oscillon equation / Di Plinio, F.; Duane, G. S.; Temam, R.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 29:1(2011), pp. 141-167. [10.3934/dcds.2011.29.141]
Time-dependent attractor for the oscillon equation
Di Plinio F.;
2011
Abstract
We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Oscillon equation ∂ttu(x, t)+H∂tu(x, t)-e-2Ht∂xxu(x, t)+V '(u(x, t)) = 0, (x, t) ε (0, 1) × ℝ, with periodic boundary conditions, where H > 0 is the Hubble constant and V is a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular global attractor A = A(t). The kernel sections A(t) have finite fractal dimension.File | Dimensione | Formato | |
---|---|---|---|
DDT-1d.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Accesso privato/ristretto
Dimensione
361.38 kB
Formato
Adobe PDF
|
361.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.