It is a result by Lacey and Thiele (Ann. of Math. (2) 146(3):693-724, 1997; ibid. 149(2):475-496, 1999) that the bilinear Hilbert transform maps Lp1(ℝ) × Lp2(ℝ) into Lp1(ℝ) whenever (p1,p2,p3) is a Hölder tuple with p1,p3>1 and p3>2/3. We study the behavior of the quartile operator, which is the Walsh model for the bilinear Hilbert transform, when p3=2/3. We show that the quartile operator maps Lp1(ℝ) × Lp2(ℝ) into L2/3,∞(ℝ) when p1,p2>1 and one component is restricted to subindicator functions. As a corollary, we derive that the quartile operator maps Lp1(ℝ) × Lp2,2/3(ℝ) into L2/3,∞(ℝ). We also provide weak type estimates and boundedness on Orlicz-Lorentz spaces near p1=1,p2=2 which improve, in the Walsh case, the results of Bilyk and Grafakos (J. Geom. Anal. 16 (4):563-584, 2006) and Carro et al. (J. Math. Anal. Appl. 357(2):479-497, 2009). Our main tool is the multi-frequency Calderón-Zygmund decomposition from (Nazarov et al. in Math. Res. Lett. 17(3):529-545, 2010). © 2013 Springer Science+Business Media New York.
Endpoint Bounds for the Quartile Operator / Demeter, C.; Di Plinio, F.. - In: JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS. - ISSN 1069-5869. - 19:4(2013), pp. 836-856. [10.1007/s00041-013-9275-4]
Endpoint Bounds for the Quartile Operator
Di Plinio F.
2013
Abstract
It is a result by Lacey and Thiele (Ann. of Math. (2) 146(3):693-724, 1997; ibid. 149(2):475-496, 1999) that the bilinear Hilbert transform maps Lp1(ℝ) × Lp2(ℝ) into Lp1(ℝ) whenever (p1,p2,p3) is a Hölder tuple with p1,p3>1 and p3>2/3. We study the behavior of the quartile operator, which is the Walsh model for the bilinear Hilbert transform, when p3=2/3. We show that the quartile operator maps Lp1(ℝ) × Lp2(ℝ) into L2/3,∞(ℝ) when p1,p2>1 and one component is restricted to subindicator functions. As a corollary, we derive that the quartile operator maps Lp1(ℝ) × Lp2,2/3(ℝ) into L2/3,∞(ℝ). We also provide weak type estimates and boundedness on Orlicz-Lorentz spaces near p1=1,p2=2 which improve, in the Walsh case, the results of Bilyk and Grafakos (J. Geom. Anal. 16 (4):563-584, 2006) and Carro et al. (J. Math. Anal. Appl. 357(2):479-497, 2009). Our main tool is the multi-frequency Calderón-Zygmund decomposition from (Nazarov et al. in Math. Res. Lett. 17(3):529-545, 2010). © 2013 Springer Science+Business Media New York.File | Dimensione | Formato | |
---|---|---|---|
DD2-BHT-JFAA-pub.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Accesso privato/ristretto
Dimensione
782.45 kB
Formato
Adobe PDF
|
782.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.