Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limiting cases of composite Goldstone Higgs and Technicolor-like ones. This is possible due to the existence of a unified description, both at the effective and fundamental Lagrangian levels, of models of composite Higgs dynamics where the Higgs boson itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. In our template, a mass term for the fermions in the fundamental theory acts as a stabilizer of the Higgs potential, without the need for partners of the top quark. We constrain the available parameter space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider.
Fundamental composite electroweak dynamics: Status at the LHC / Arbey, A.; Cacciapaglia, G.; Cai, H.; Deandrea, A.; Le Corre, S.; Sannino, F.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 95:1(2017). [10.1103/PhysRevD.95.015028]
Fundamental composite electroweak dynamics: Status at the LHC
Sannino F.Co-primo
Conceptualization
2017
Abstract
Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limiting cases of composite Goldstone Higgs and Technicolor-like ones. This is possible due to the existence of a unified description, both at the effective and fundamental Lagrangian levels, of models of composite Higgs dynamics where the Higgs boson itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. In our template, a mass term for the fermions in the fundamental theory acts as a stabilizer of the Higgs potential, without the need for partners of the top quark. We constrain the available parameter space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.