Against dust explosions, all the flammability and explosibility parameters must be evaluated following standard procedures using the 20 L and/or the 1 m3 vessel. Previous results comparing the dust dispersion in the 20 L sphere equipped with rebound or perforated annular nozzle showed that the initial turbulence level, the dust concentration, and the feeding are affected by the type of nozzle used. In this work, a similar investigation was performed on the 1 m3 vessel, simulating the fluid flow evolution which is obtained with the rebound nozzle. Results showed that the 1 m3 vessel equipped with rebound nozzle presents a less uniform degree of turbulence and a higher amount of dust fed, compared to the case of perforated annular nozzle. However, the greatest effect on the initial level of turbulence and turbulent combustion regime is determined by the size of the vessel and not by the type of nozzle used.
CFD simulation of turbulent fluid flow and dust dispersion in the 1 m3 explosion vessel equipped with the rebound nozzle / Portarapillo, M.; Trofa, M.; Sanchirico, R.; Di Benedetto, A.. - In: JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES. - ISSN 0950-4230. - 76:(2022), p. 104755. [10.1016/j.jlp.2022.104755]
CFD simulation of turbulent fluid flow and dust dispersion in the 1 m3 explosion vessel equipped with the rebound nozzle
Portarapillo M.;Trofa M.;Sanchirico R.;Di Benedetto A.
2022
Abstract
Against dust explosions, all the flammability and explosibility parameters must be evaluated following standard procedures using the 20 L and/or the 1 m3 vessel. Previous results comparing the dust dispersion in the 20 L sphere equipped with rebound or perforated annular nozzle showed that the initial turbulence level, the dust concentration, and the feeding are affected by the type of nozzle used. In this work, a similar investigation was performed on the 1 m3 vessel, simulating the fluid flow evolution which is obtained with the rebound nozzle. Results showed that the 1 m3 vessel equipped with rebound nozzle presents a less uniform degree of turbulence and a higher amount of dust fed, compared to the case of perforated annular nozzle. However, the greatest effect on the initial level of turbulence and turbulent combustion regime is determined by the size of the vessel and not by the type of nozzle used.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0950423022000328-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
9.09 MB
Formato
Adobe PDF
|
9.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.