Let T be the multiplicative group of complex units, and let L (Φ) denote the Laplacian matrix of a nonempty T-gain graph Φ = (Γ, T, γ). The gain line graph L (Φ) and the gain subdivision graph S (Φ) are defined up to switching equivalence. We discuss how the eigenspaces determined by the adjacency eigenvalues of L (Φ) and S (Φ) are related with those of L (Φ).
On eigenspaces of some compound complex unit gain graphs / Belardo, F.; Brunetti, M.. - In: TRANSACTIONS ON COMBINATORICS. - ISSN 2251-8657. - 11:3(2022), pp. 131-152. [10.22108/TOC.2021.130013.1888]
On eigenspaces of some compound complex unit gain graphs
Belardo F.;Brunetti M.
2022
Abstract
Let T be the multiplicative group of complex units, and let L (Φ) denote the Laplacian matrix of a nonempty T-gain graph Φ = (Γ, T, γ). The gain line graph L (Φ) and the gain subdivision graph S (Φ) are defined up to switching equivalence. We discuss how the eigenspaces determined by the adjacency eigenvalues of L (Φ) and S (Φ) are related with those of L (Φ).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
TOC_2022 Autumn_Vol 11_Issue 3_Pages 131-152.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
594.22 kB
Formato
Adobe PDF
|
594.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.