We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional low-contrast periodic environment, by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuum analysis. As in a recent paper by Braides and Scilla dealing with high-contrast periodic media, we give an example showing that in general the effective motion does not depend only on the Γ-limit, but also on geometrical features that are not detected in the static description. We show that there exists a critical value δ˜ of the contrast parameter δ above which the discrete motion is constrained and coincides with the high-contrast case. If δ
Motion of discrete interfaces in low-contrast periodic media / Scilla, Giovanni. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - 9:1(2014), pp. 169-189. [10.3934/nhm.2014.9.169]
Motion of discrete interfaces in low-contrast periodic media
Giovanni Scilla
2014
Abstract
We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional low-contrast periodic environment, by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuum analysis. As in a recent paper by Braides and Scilla dealing with high-contrast periodic media, we give an example showing that in general the effective motion does not depend only on the Γ-limit, but also on geometrical features that are not detected in the static description. We show that there exists a critical value δ˜ of the contrast parameter δ above which the discrete motion is constrained and coincides with the high-contrast case. If δFile | Dimensione | Formato | |
---|---|---|---|
Scilowcontrast13.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
333.11 kB
Formato
Adobe PDF
|
333.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.