In this paper, the asymptotic behavior of the solutions of a monotone problem posed in a locally periodic oscillating domain is studied. Nonlinear monotone boundary conditions are imposed on the oscillating part of the boundary whereas the Dirichlet condition is considered on the smooth separate part. Using the unfolding method, under natural hypothesis on the regularity of the domain, we prove the weak Lp-convergence of the zero-extended solutions of the nonlinear problem and their flows to the solutions of a limit distributional problem.

Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method / Aiyappan, S.; Cardone, G.; Perugia, C.; Prakash, R.. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 66:(2022), p. 103537. [10.1016/j.nonrwa.2022.103537]

Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method

Cardone G.
Membro del Collaboration Group
;
Perugia C.
Membro del Collaboration Group
;
2022

Abstract

In this paper, the asymptotic behavior of the solutions of a monotone problem posed in a locally periodic oscillating domain is studied. Nonlinear monotone boundary conditions are imposed on the oscillating part of the boundary whereas the Dirichlet condition is considered on the smooth separate part. Using the unfolding method, under natural hypothesis on the regularity of the domain, we prove the weak Lp-convergence of the zero-extended solutions of the nonlinear problem and their flows to the solutions of a limit distributional problem.
2022
Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method / Aiyappan, S.; Cardone, G.; Perugia, C.; Prakash, R.. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 66:(2022), p. 103537. [10.1016/j.nonrwa.2022.103537]
File in questo prodotto:
File Dimensione Formato  
AiyappanCardonePerugiaPrakashNonlinearAnal.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 828 kB
Formato Adobe PDF
828 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/899855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact